Clathrin Assembly Protein CALM Plays a Critical Role in KIT Signaling by Regulating Its Cellular Transport from Early to Late Endosomes in Hematopoietic Cells
نویسندگان
چکیده
CALM is implicated in the formation of clathrin-coated vesicles, which mediate endocytosis and intracellular trafficking of growth factor receptors and nutrients. We previously found that CALM-deficient mice suffer from severe anemia due to the impaired clathrin-mediated endocytosis of transferrin receptor in immature erythroblast. However, CALM has been supposed to regulate the growth and survival of hematopoietic stem/progenitor cells. So, in this study, we focused on the function of CALM in these cells. We here show that the number of Linage-Sca-1+KIT+ (LSK) cells decreased in the fetal liver of CALM-/- mice. Also, colony forming activity was impaired in CALM-/- LSK cells. In addition, SCF, FLT3, and TPO-dependent growth was severely impaired in CALM-/- LSK cells, while they can normally proliferate in response to IL-3 and IL-6. We also examined the intracellular trafficking of KIT using CALM-/- murine embryonic fibroblasts (MEFs) engineered to express KIT. At first, we confirmed that endocytosis of SCF-bound KIT was not impaired in CALM-/- MEFs by the internalization assay. However, SCF-induced KIT trafficking from early to late endosome was severely impaired in CALM-/- MEFs. As a result, although intracellular KIT disappeared 30 min after SCF stimulation in wild-type (WT) MEFs, it was retained in CALM-/- MEFs. Furthermore, SCF-induced phosphorylation of cytosolic KIT was enhanced and prolonged in CALM-/- MEFs compared with that in WT MEFs, leading to the excessive activation of Akt. Similar hyperactivation of Akt was observed in CALM-/- KIT+ cells. These results indicate that CALM is essential for the intracellular trafficking of KIT and its normal functions. Also, our data demonstrate that KIT located in the early endosome can activate downstream molecules as a signaling endosome. Because KIT activation is involved in the pathogenesis of some malignancies, the manipulation of CALM function would be an attractive therapeutic strategy.
منابع مشابه
Modulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملNuclear export signal within CALM is necessary for CALM-AF10-induced leukemia
The CALM-AF10 fusion gene, which results from a t(10;11) translocation, is found in a variety of hematopoietic malignancies. Certain HOXA cluster genes and MEIS1 genes are upregulated in patients and mouse models that express CALM-AF10. Wild-type clathrin assembly lymphoid myeloid leukemia protein (CALM) primarily localizes in a diffuse pattern within the cytoplasm, whereas AF10 localizes in th...
متن کاملTransport of the cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1.
The retrograde pathway is defined by the transport of proteins and lipids from the plasma membrane through endosomes to the Golgi complex, and is essential for a variety of cellular activities. Recycling endosomes are important sorting stations for some retrograde cargo. SMAP2, a GTPase-activating protein (GAP) for Arf1 with a putative clathrin-binding domain, has previously been shown to parti...
متن کاملThe PICALM Protein Plays a Key Role in Iron Homeostasis and Cell Proliferation
The ubiquitously expressed phosphatidylinositol binding clathrin assembly (PICALM) protein associates with the plasma membrane, binds clathrin, and plays a role in clathrin-mediated endocytosis. Alterations of the human PICALM gene are present in aggressive hematopoietic malignancies, and genome-wide association studies have recently linked the PICALM locus to late-onset Alzheimer's disease. In...
متن کامل